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Many modern learning tasks including deep neural networks involve fitting highly nonlinear models to 
data which are trained in an over-parameterized regime where the parameters of the model exceed the 
size of the training dataset. A major challenge is that training these models correspond to extremely 
high-dimensional and nonconvex optimization problems and it is not clear how to provably solve them 
to global optimality. Furthermore, due to over-parameterization, the training loss may have infinitely 
many global minima and it is critical to understand the properties of the solutions found by first-order 
optimization schemes such as (stochastic) gradient descent starting from different initial estimates. In 
this talk I will show that (stochastic) gradient methods have a few intriguing properties: 1) the iterates 
converge at a geometric rate to a global optima despite the nonconvex nature of the landscape, (2) 
among all global optima of the loss the iterates converge to one with a near minimal distance to the 
initial estimate, (3) the iterates take a near direct route from the initial estimate to this global optima. 
I will demonstrate the utility of our general theory for a variety of problem domains spanning low-rank 
matrix recovery to neural network training. (This talk is based on joint work with Samet Oymak) 

 


